Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Sports Act Living ; 5: 1268146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915979

RESUMEN

The aim of our study was to develop a methodology that uses the metronome to constrain the swimmers' stroke rate with the aim to monitor changes in stroke length (SL) during two different periods of the season. Thirteen young trained swimmers (15.7 ± 1.7 y) performed three 50 m front crawl time trials during pre-season (PRE) and after 2 months, during the in-season period (IN). They were asked: (I) to swim at their maximum intensity (NO-MET condition); (II) to synchronize their stroke with a metronome beat set to their preferred intra-stroke-interval (ISI) (100% condition, corresponding to 48 ± 0.7 cycles/min); (III) to synchronize their stroke with a metronome beat set at 5% higher than their preferred ISI (95% condition, corresponding to 51 ± 0.8 cycles/min). The outcome parameters used to evaluate the performance were ISI, SL and total time of 50 m (TT). In NO-MET condition, results showed that TT in IN improved with respect to PRE, but no changes in ISI and SL. In 100% condition, no differences were obtained between the imposed and the performed ISI, whilst in 95% condition, the performed ISI was lower than the metronome ISI, and lower than that in 100% condition. At last, when using the metronome, SL was higher during IN compared to PRE and SL was lower in the 95% condition compared to the 100% condition. Results indicate that the use of the metronome successfully allowed monitoring changes in SL during different periods of the season. This methodology provides valuable information to coaches and athletes to enhance their performance throughout the season.

2.
Front Psychiatry ; 14: 1244364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900289

RESUMEN

Introduction: Personality shapes the cognitive, affective, and behavioral interactions between individuals and the environment. Defensive peripersonal space (DPPS) is the projected interface between the body and the world with a protective function for the body. Previous studies suggest that DPPS displays inter-individual variability that is associated with psychiatric symptoms, such as anxiety. However, DPPS may share a link with personality traits. Methods: Fifty-five healthy participants were assessed with the Personality Inventory for DSM-5 (PID-5)-Adult to evaluate personality dimensions. Subjects underwent the Hand Blink Reflex (HBR) task that estimates the DPPS limits by assessing the modulation of blink intensity in response to the median nerve stimulation. Data of the HBR was analyzed with Bayesian multilevel models, while the relationship between DPPS and personality traits was explored using network analysis. Results: HBR was best modeled using a piecewise linear regression model, with two distinct slope parameters for electromyographic data. Network analyzes showed a positive correlation between the proximal slope and detachment personality trait, suggesting that individuals with higher scores in the detachment trait had an increased modulation of HBR, resulting in a larger extension of the DPPS. Discussion: Features of the detachment personality trait include avoidance of interpersonal experiences, restricted affectivity, and suspiciousness, which affect interpersonal functioning. We suggest that DPPS may represent a characteristic feature of maladaptive personality traits, thus constitute a biomarker or a target for rehabilitative interventions.

3.
Front Aging Neurosci ; 15: 1216304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609031

RESUMEN

The ability to predict the weight of objects is important for skilled and dexterous manipulation during activities of daily living. The observation of other people moving objects might represent an important source of information on object features and help to plan the correct motor interaction with it. In aging, an impaired ability to evaluate the object weight might have negative drawbacks in term of the safety of the person. The aim of this study was to investigate the role of aging in the ability to discriminate the object weight during action observation. Twenty older adults (Old) and twenty young subjects (Young) performed a two-interval forced-choice task consisting in the observation of a couple of videos showing an actor moving a box of different weights. The observer had to evaluate which video showed the heavier box. Handgrip strength was acquired from all subjects. Sensitivity analysis was performed and psychometric curves were built on participants' responses. The results showed a diminished sensitivity in the object weight discrimination in Old than in Young group. The analysis of the psychometric curves revealed that this impairment pertained both the light and heavy boxes and the minimum difference to discriminate different weights was greater in Old than in Young. At last, the sensitivity and the discrimination ability significantly correlated with individuals' handgrip strength. These findings allow us to deeply characterize the impairments older adults have in discriminating the weight of an object moved by another individual.

4.
Neuroimage ; 280: 120348, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37625501

RESUMEN

Manual dexterity is referred to as the skill to perform fine motor movements and it has been assumed to be associated to the cognitive domain, as well as the sensorimotor one. In this work, we investigated with functional near-infrared spectroscopy the cortical activations elicited by the execution of the 9-HPT, i.e., a standard test evaluating manual dexterity in which nine pegs were taken, placed into and then removed from nine holes on a board as quickly as possible. For comparison, we proposed a new active control task mainly involving the sensorimotor domain, in which the pegs must be placed and removed using the same single hole (1-HPT). Behaviorally, we found two distinct groups based on the difference between the execution time of the 9-HPT and the 1-HPT (ΔHPT). Cortical areas belonging to the network controlling reaching and grasping movements were active in both groups; however, participants showing a large ΔHPT presented significantly higher activation in prefrontal cortical areas (right BA10 and BA11) during 9-HPT and 1-HPT performance with respect to the participants with a small ΔHPT, who showed a deactivation in BA10. Unexpectedly, we observed a significant linear relationship between ΔHPT and right BA10 activity. This suggested that participants performing the 9-HPT more slowly than the 1-HPT recruited prefrontal areas implicitly exploiting the cognitive skills of planning, perhaps in search of a motor strategy to solve the test activating attentional and cognitive control processes, but this resulted not efficient and instead increased the time to accomplish a manual dexterity task.


Asunto(s)
Movimiento , Corteza Prefrontal , Humanos , Corteza Prefrontal/diagnóstico por imagen , Cognición
5.
Front Sports Act Living ; 5: 1148812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426895

RESUMEN

This study aimed to investigate the role of sensorimotor expertise in evaluating relative weight of a lifted object during the observation of a sport-specific gesture, namely the deadlift. Fifty-six participants, assigned to three groups according to their experience in weight lifting, powerlifters, CrossFit® practitioners and naïve participants (controls), performed a perceptual weight judgments task. Participants observed videos showing a powerlifter executing a deadlift at the 80%, 90% and 100% of 1 repetition maximum (1RM) and answered a question about the weight of the lifted object. Participants' response accuracy and variability were evaluated. Findings showed that powerlifters were more accurate than controls. No differences appeared between powerlifter and CrossFit® practitioners, and between CrossFit® practitioners and controls. Response variability was similar in the three groups. These findings suggest that a fine sensorimotor expertise specific for the observed gesture is crucial to detect the weight of the object displayed in the observed movement, since it might allow detecting small changes in the observed movement kinematics, which we speculate are at the basis of the object weight recognition.

6.
Front Neurosci ; 17: 1192674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325041

RESUMEN

Time-of-day is rarely considered during experimental protocols investigating motor behavior and neural activity. The goal of this work was to investigate differences in functional cortical connectivity at rest linked to the time of the day using functional Near-Infrared Spectroscopy (fNIRS). Since resting-state brain is shown to be a succession of cognitive, emotional, perceptual, and motor processes that can be both conscious and nonconscious, we studied self-generated thought with the goal to help in understanding brain dynamics. We used the New-York Cognition Questionnaire (NYC-Q) for retrospective introspection to explore a possible relationship between the ongoing experience and the brain at resting-state to gather information about the overall ongoing experience of subjects. We found differences in resting-state functional connectivity in the inter-hemispheric parietal cortices, which was significantly greater in the morning than in the afternoon, whilst the intra-hemispheric fronto-parietal functional connectivity was significantly greater in the afternoon than in the morning. When we administered the NYC-Q we found that the score of the question 27 ("during RS acquisition my thoughts were like a television program or film") was significantly greater in the afternoon with respect to the morning. High scores in question 27 point to a form of thought based on imagery. It is conceivable to think that the unique relationship found between NYC-Q question 27 and the fronto-parietal functional connectivity might be related to a mental imagery process during resting-state in the afternoon.

7.
Sci Rep ; 12(1): 21078, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473893

RESUMEN

Brainstem dysfunctions are very common in Multiple Sclerosis (MS) and are a critical predictive factor for future disability. Brainstem functionality can be explored with blink reflexes, subcortical responses consisting in a blink following a peripheral stimulation. Some reflexes are already employed in clinical practice, such as Trigeminal Blink Reflex (TBR). Here we propose for the first time in MS the exploration of Hand Blink Reflex (HBR), which size is modulated by the proximity of the stimulated hand to the face, reflecting the extension of the peripersonal space. The aim of this work is to test whether Machine Learning (ML) techniques could be used in combination with neurophysiological measurements such as TBR and HBR to improve their clinical information and potentially favour the early detection of brainstem dysfunctionality. HBR and TBR were recorded from a group of People with MS (PwMS) with Relapsing-Remitting form and from a healthy control group. Two AdaBoost classifiers were trained with TBR and HBR features each, for a binary classification task between PwMS and Controls. Both classifiers were able to identify PwMS with an accuracy comparable and even higher than clinicians. Our results indicate that ML techniques could represent a tool for clinicians for investigating brainstem functionality in MS. Also, HBR could be promising when applied in clinical practice, providing additional information about the integrity of brainstem circuits potentially favouring early diagnosis.


Asunto(s)
Parpadeo , Esclerosis Múltiple , Humanos , Neurofisiología , Aprendizaje Automático
8.
Brain Sci ; 12(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625068

RESUMEN

Social distancing norms have been promoted after the COVID-19 pandemic. In this work, we tested interpersonal space (IPS) in 107 subjects through a reaching-comfort distance estimation task. In the main experiment, subjects had to estimate the comfort and reach space between an avatar wearing or not wearing a face mask. We found that IPS was greater between avatars not wearing a mask with respect to stimuli with the mask on, while reaching space was not modulated. IPS increment in the NoMask condition with respect to the Mask condition correlated with anxiety traits, as shown with the State-Trait Anxiety Inventory, rather than with transient aspects related to the pandemic situation. In the control experiment, the avatars with a mask were removed to further explore the conditioning effect provided by the presence of the facial protection in the main experiment. We found a significant difference comparing this condition with the same condition of the main experiment, namely, the distances kept between avatars not wearing a mask in the main experiment were greater than those between the same stimuli in the control experiment. This showed a contextual adaptation of IPS when elements related to the actual pandemic situation were relevant. Additionally, no significant differences were found between the control experiment and the Mask condition of the main experiment, suggesting that participants had internalized social distancing norms and wearing a mask has become the new normal. Our results highlight the tendency of people in underestimating the risk of contagion when in the presence of someone wearing a mask.

9.
Neuroscience ; 475: 73-82, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34425159

RESUMEN

Specific neural mechanisms operate at corticospinal levels during eccentric and concentric contractions. Here, we investigated the difference in corticospinal excitability (CSE) when preparing these two types of contraction. In this study we enrolled 16 healthy participants. They were asked to perform an instructed-delay reaction time (RT) task involving a concentric or an eccentric contraction of the right first dorsal interosseus muscle, as a response to a proprioceptive cue (Go signal) presented 1 s after a warning signal. We tested CSE at different time points ranging from 300 ms before up to 40 ms after a Go signal. CSE increased 300-150 ms before the Go signal for both contractions. Interestingly, significant changes in CSE in the time interval around the Go signal (from -150 ms to +40 ms) were only revealed in eccentric contraction. We observed a significant decrease in excitability immediately before the Go cue (Pre_50) and a significant increase 40 ms after it (Post_40) with respect to the MEPs recorded at Pre_150. Finally, CSE in eccentric contraction was lower before the Go cue (Pre_50) and greater after it (Post_40) compared to the concentric contraction. A similar result was also found in NoMov paradigm, used to disentangle the effects induced by movement preparation from those induced by the movement preparation linked to the proprioceptive cue. We could conclude that different neural mechanisms observed during concentric and eccentric contractions are mirrored with a different time-specific modulation of CSE in the preparatory phase to the movement.


Asunto(s)
Excitabilidad Cortical , Potenciales Evocados Motores , Electromiografía , Humanos , Movimiento , Contracción Muscular , Músculo Esquelético , Tractos Piramidales , Estimulación Magnética Transcraneal
10.
Eur J Neurosci ; 53(8): 2763-2773, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539632

RESUMEN

Action observation combined with proprioceptive stimulation able to induce a kinesthetic illusion of movement (AO-KI) was shown to elicit a plastic increase in primary motor cortex (M1) excitability, with promising applications in rehabilitative interventions. Nevertheless, the known individual variability in response to combined stimulation protocols limits its application. The aim of this study was to examine whether a relationship exists between changes in M1 excitability during AO-KI and the long-lasting changes in M1 induced by AO-KI. Fifteen volunteers received a conditioning protocol consisting in watching a video showing a thumb-opposition movement and a simultaneous proprioceptive stimulation that evoked an illusory kinesthetic experience of their thumbs closing. M1 excitability was evaluated by means of single-pulse transcranial magnetic stimulation before, DURING the conditioning protocol, and up to 60 min AFTER it was administered. M1 excitability significantly increased during AO-KI with respect to a rest condition. Furthermore, AO-KI induced a long-lasting increase in M1 excitability up to 60 min after administration. Finally, a significant positive correlation appeared between M1 excitability changes during and after AO-KI; that is, participants who were more responsive during AO-KI showed greater motor cortical activity changes after it. These findings suggest that M1 response during AO-KI can be considered a neurophysiological marker of individual responsiveness to the combined stimulation since it was predictive of its efficacy in inducing long-lasting M1 increase excitability. This information would allow knowing in advance whether an individual will be a responder to AO-KI.


Asunto(s)
Ilusiones , Corteza Motora , Electromiografía , Potenciales Evocados Motores , Humanos , Movimiento , Plasticidad Neuronal , Estimulación Magnética Transcraneal
11.
Front Sports Act Living ; 2: 550744, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33345114

RESUMEN

Motor imagery (MI), i. e., the mental simulation of an action without its actual execution, is a promising technique to boost motor learning via physical practice in rehabilitation, sport, and educational fields. The purpose of the present pilot study was to test the feasibility and the effectiveness of the application of MI as learning methodology place alongside conventional teaching technique as employed for physical education lessons. Thirty-three high school students from two classes were enrolled for instruction in the underhand serve in volleyball. One group, the motor imagery group (MIG) carried out the physical exercise along with the kinesthetic MI of the action, while the other group (the control group) was limited to the merely physical exercise. The training period lasted 8 weeks. MI duration and the duration of real movement (ME), the isochrony index (differences between real and imagined movements duration), and the number of balls which passed over the net (NBN) were evaluated before and after training. Results showed a significant improvement in the isochrony index for the MIG group exclusively; namely, MI duration became more similar to ME duration. Moreover, in MIG a significantly negative relationship appeared between the percentage change in the isochrony index and the difference between NBN before and after training. These findings suggest improvement in sensorimotor representation of the action, which lies at the basis of enhanced motor performance. The present study constitutes initial proof of concept on the application of MI as learning technique applicable to physical education lesson at high school.

12.
Sci Rep ; 10(1): 21116, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273638

RESUMEN

The hand-blink reflex (HBR) is a subcortical response, elicited by the electrical stimulation of the median nerve, whose magnitude is specifically modulated according to the spatial properties of the defensive peripersonal space (DPPS) of the face. For these reasons, the HBR is commonly used as a model to assess the DPPS of the face. Little is known on the effects induced by the activation of cutaneous afferents from the face on the DPPS of the face. Therefore, we tested the effect of non-painful transcutaneous trigeminal nerve stimulation (TNS) on the amplitude of the HBR. Fifteen healthy participants underwent HBR recording before and after 20 min of sham- and real-TNS delivered bilaterally to the infraorbital nerve in two separate sessions. The HBR was recorded bilaterally from the orbicularis oculi muscles, following non-painful median nerve stimulation at the wrist. The HBR amplitude was assessed in the "hand-far" and "hand-near" conditions, relative to the hand position in respect to the face. The amplitudes of the hand-far and hand-near HBR were measured bilaterally before and after sham- and real-TNS. Real-TNS significantly reduced the magnitude of the HBR, while sham-TNS had no significant effect. The inhibitory effect of TNS was of similar extent on both the hand-far and hand-near components of the HBR, which suggests an action exerted mainly at brainstem level.


Asunto(s)
Parpadeo/fisiología , Mano/fisiología , Reflejo/fisiología , Estimulación Eléctrica Transcutánea del Nervio , Nervio Trigémino/fisiología , Adulto , Área Bajo la Curva , Femenino , Humanos , Masculino , Músculos/fisiología , Adulto Joven
13.
Soc Cogn Affect Neurosci ; 15(1): 123-134, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32064526

RESUMEN

Humans can acquire information on others' motor outputs (action prediction) and intentions (action understanding) according to their individual motor repertoire and to the detected gesture's features (e.g. temporal patterns). We aimed at dissociating between action prediction and action understanding abilities in soccer players and novices observing soccer action videos including correct timing pass (CTP) or delayed pass (DP). First, we used an occluding paradigm to evaluate participants' ability to predict the correct time to pass the ball. Although soccer players showed reduced reaction times, all subjects showed a similar pattern of performance: during DP observation, responses appeared delayed with respect to the other conditions but anticipated with respect to the observed DP. In a separate experiment, we investigated the ability to recognize CTP vs DP and the modulation of primary motor cortex (M1) excitability associated to video observation. Only soccer players showed selective modulation of M1 according to the plausibility of the observed action, with increased excitability during the observation of the CTP and in a phase preceding the DP. In conclusion, action prediction ability seems to be independent from the individual motor repertoire. By contrast, only subjects with previously acquired sensorimotor skills are able to infer the observed action's long-term intention.


Asunto(s)
Motivación/fisiología , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Fútbol/psicología , Adulto , Comprensión , Potenciales Evocados Motores , Femenino , Humanos , Intención , Masculino , Estimulación Magnética Transcraneal , Adulto Joven
14.
Neuropsychologia ; 137: 107275, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31765654

RESUMEN

Lexical competence includes both the ability to relate words to the external world as accessed through (mainly) visual perception (referential competence) and the ability to relate words to other words (inferential competence). We investigated the role of visual imagery in lexical inferential competence by using an auditory version of an inferential naming-to-definition task, in which visual imageability of both definitions and target words was manipulated. A visual imageability-related brain activity (bilateral posterior-parietal lobe and ventrotemporal cortex, including fusiform gyrus) was found during a "pure" inferential performance. The definition effect in high vs. low imageability contrast suggests that a visual-imagery strategy is spontaneously activated during the retrieval of a word from a high imageable definition; such an effect appears to be independent of whether the target word is high or low imageable. This contributes to the understanding of the neural correlates of semantic processing and the differential role of spontaneous visual imagery, depending on the semantic properties of the processed stimuli.


Asunto(s)
Mapeo Encefálico , Imaginación/fisiología , Lóbulo Parietal/fisiología , Psicolingüística , Lóbulo Temporal/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Parietal/diagnóstico por imagen , Reconocimiento Visual de Modelos/fisiología , Habla/fisiología , Percepción del Habla/fisiología , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
15.
J Physiol ; 597(12): 3233-3245, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31074046

RESUMEN

KEY POINTS: The combination of action observation (AO) and a peripheral nerve stimulation has been shown to induce plasticity in the primary motor cortex (M1). However, using peripheral nerve stimulation little is known about the specificity of the sensory inputs. The current study, using muscle tendon vibration to stimulate muscle spindles and transcranial magnetic stimulation to assess M1 excitability, investigated whether a proprioceptive stimulation leading to a kinaesthetic illusion of movement (KI) was able to evoke M1 plasticity when combined with AO. M1 excitability increased immediately and up to 60 min after AO-KI stimulation as a function of the vividness of the perceived illusion, and only when the movement directions of AO and KI were congruent. Tactile stimulation coupled with AO and KI alone were not sufficient to induce M1 plasticity. This methodology might be proposed to subjects during a period of immobilization to promote M1 activity without requiring any voluntary movement. ABSTRACT: Physical practice is crucial to evoke cortical plasticity, but motor cognition techniques, such as action observation (AO), have shown their potentiality in promoting it when associated with peripheral afferent inputs, without the need of performing a movement. Here we investigated whether the combination of AO and a proprioceptive stimulation, able to evoke a kinaesthetic illusion of movement (KI), induced plasticity in the primary motor cortex (M1). In the main experiment, the role of congruency between the observed action and the illusory movement was explored together with the importance of the specificity of the sensory input modality (proprioceptive vs. tactile stimulation) to induce plasticity in M1. Further, a control experiment was carried out to assess the role of the mere kinaesthetic illusion on M1 excitability. Results showed that the combination of AO and KI evoked plasticity in M1, with an increase of the excitability immediately and up to 60 min after the conditioning protocol (P always <0.05). Notably, a significant increase in M1 excitability occurred only when the directions of the observed and illusory movements were congruent. Further, a significant positive linear relationship was found between the amount of M1 excitability increase and the vividness of the perceived illusion (P = 0.03). Finally, the tactile stimulation coupled with AO was not sufficient to induce changes in M1 excitability as well as the KI alone. All these findings indicate the importance of combining different sensory input signals to induce plasticity in M1, and that proprioception is the most suitable sensory modality to allow it.


Asunto(s)
Corteza Motora/fisiología , Plasticidad Neuronal/fisiología , Pulgar/fisiología , Adulto , Estimulación Eléctrica , Electromiografía , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología , Propiocepción/fisiología , Tacto , Estimulación Magnética Transcraneal , Vibración , Adulto Joven
16.
Sci Rep ; 9(1): 6739, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043673

RESUMEN

The Hand Blink Reflex (HBR) is a subcortical defensive response, elicited by the electrical stimulation of the median nerve. HBR increases when the stimulated hand is inside the defensive peripersonalspace (DPPS) of the face. However, the presence of a screen protecting the face could reduce the amplitude of this response. This work aimed to investigate whether the learning of a posture intended to protect the head could modulate the HBR responses. Boxing athletes learn a defensive posture consisting of blocking with arms opponent's blow towards the face. Two groups were recruited: 13 boxers and 13 people naïve to boxing. HBR response was recorded and elicited in three hand positions depending on the distance from the face. A suppression of HBR enhancement in the static position close to the face was observed in boxer group, contrary to the control group. Also, the higher years of practice in boxing, the higher suppression occurred. However, this suppression was not observed when boxers were asked to move the hand up-to/down-from the face. These findings might suggest that the sensorimotor experience related to a previously learnt protective posture can modify the HBR and thus shape the dimension of the DPPS.


Asunto(s)
Aprendizaje , Espacio Personal , Postura , Adulto , Análisis de Varianza , Área Bajo la Curva , Humanos , Masculino , Adulto Joven
17.
Cortex ; 101: 181-191, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29482016

RESUMEN

Amputees with phantom limb sometimes report vivid experiences of moving their phantom. Is phantom movement only "imaginary", or, instead, it has physiological properties comparable to those pertaining to real movements? To answer this question, we took advantage of the intermanual transfer of sequence learning, occurring when one hand motor skills improve after training with the other hand. Ten healthy controls and two upper-limb amputees (with and without phantom-movement) were recruited. They were asked to perform with the right (intact) hand a fingers-thumb opposition sequence either in Naïve condition or after an active (Real condition) or a mental (Imagery condition) training with the left (phantom) hand. In healthy controls, the results showed different effects after active training (i.e., faster movement duration (MD) with stable accuracy) and after mental training (i.e., increased accuracy with stable MD). Opposite results between moving-phantom case and static-phantom case were found. In the Real condition, after an "active" training with her phantom hand, the moving-phantom case showed a faster performance of the intact hand. This transfer effect was not different from that found in healthy controls, actually performing the active training with an existing hand (Real condition), but, crucially, it was significantly different from both Imagery and Naïve conditions of controls. Contrariwise, in the static phantom case, the performance during the Real condition was significantly different from the Real condition of healthy controls and it was not significantly different from their Imagery and Naïve conditions. Importantly, a significant difference was found when the transfer effect in Real condition was compared between the two phantom cases. Taken together, these findings provide the first evidence that a phantom limb can learn motor skills and transfer them to the intact limb.


Asunto(s)
Amputados/psicología , Imaginación/fisiología , Destreza Motora/fisiología , Movimiento/fisiología , Miembro Fantasma/fisiopatología , Miembro Fantasma/psicología , Adulto , Análisis de Varianza , Teorema de Bayes , Femenino , Mano/fisiología , Humanos , Aprendizaje/fisiología , Masculino , Persona de Mediana Edad , Corteza Motora/fisiología , Pulgar/fisiología , Adulto Joven
18.
Front Psychol ; 8: 1714, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085314

RESUMEN

Aim of this study was to assess whether the ability to predict the temporal outcome of a sport action was influenced by the sensorimotor skills previously acquired during a specific sport training. Four groups, each of 30 subjects, were enrolled in this study; subjects of three groups practiced different sports disciplines (i.e., swimming, rhythmic gymnastics, and water polo) at competitive level whilst the fourth group consisted of control subjects. Subjects were asked to observe a video showing a swimmer doing two laps in crawl style. This video was shown 36 times, and was occluded after variable intervals, randomized across trials, by a dark window that started 3, 6, and 12 s before the swimmer touched the poolside. During the occluded interval, subjects were asked to indicate when the swimmer touched the edge of the pool by clicking on any button of the laptop keyboard. We found that swimmers were more accurate than subjects performing other sports in temporally predicting the final outcome of the swimming task. Particularly, we observed a significant difference in absolute timing error that was lower in swimmers compared to other groups when they were asked to make a temporal prediction with the occluded interval of short duration (i.e., 3 s). Our findings demonstrate that the ability to extract temporal patterns of a motor action depends largely on the subjective expertise, suggesting that sport-acquired sensorimotor skills impact on the temporal representation of the previously observed action, allowing subjects to predict the time course of the action in absence of visual information.

19.
Sci Rep ; 7(1): 9300, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839226

RESUMEN

Motor learning via physical practice leads to long-term potentiation (LTP)-like plasticity in motor cortex (M1) and temporary occlusion of additional LTP-like plasticity. Motor learning can be achieved through simulation of movement, namely motor imagery (MI). When combined with electrical stimulation, MI influenced M1 excitability to a larger extent than MI itself. We explored whether a training based on the combination of MI and peripheral nerve stimulation (ESMI) modulates M1 LTP-like plasticity inducing retention of a new acquired skill. Twelve subjects mentally performed thumb-index movements, with synchronous electrical nerve stimulation, following an acoustic cue, in order to increase movement speed. Two control groups physically performed or imagined the same number of finger movements following the acoustic cue. After each training session, M1 LTP-like plasticity was assessed by using PAS25 (paired associative stimulation) technique. Performance was tested before and after training and 24 hours after training. Results showed that physical practice and ESMI training similarly increased movement speed, prevented the subsequent PAS25-induced LTP-like plasticity, and induced retention of motor skill the following day. Training with MI had significant, but minor effects. These findings suggest that a training combining MI with somatosensory input influences motor performance through M1 plasticity similarly to motor execution.


Asunto(s)
Estimulación Acústica/métodos , Imágenes en Psicoterapia/métodos , Aprendizaje , Corteza Motora/fisiología , Destreza Motora , Plasticidad Neuronal , Adulto , Femenino , Humanos , Masculino , Adulto Joven
20.
Neuropsychologia ; 103: 54-58, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28720524

RESUMEN

The aim of the present study was to test whether the peripersonal space (PPS), defined as the portion of the space immediately surrounding the body, is modulated by the long-term motor experience with a specific tool in a sportsmen population. To this end, we evaluated, by means of a multisensory integration paradigm, how tennis players and novices to the sport of tennis perceived the PPS while holding a tennis racket. Going deeply, in the case of the athletes, we tested the effect of their personal racket, i.e., the one they regularly use during their sport activities, compared to a common one. When handling one of these objects or nothing, participants were requested to verbally respond to a tactile stimulus administered at the right wrist while hearing a task-irrelevant sound emitted by a speaker positioned either near to the hand (Near) or far from it (Far). Reaction time to a tactile stimulus associated with the Far sound were higher than those associated with the Near sound when tennis players and novices held the common racket, whereas this difference disappeared when the athletes handled the personal tennis racket. These results suggest that the tool daily used during sport activity is stably embodied in the peripersonal space of tennis players.


Asunto(s)
Atletas/psicología , Percepción Auditiva , Destreza Motora , Espacio Personal , Tenis/psicología , Percepción del Tacto , Adulto , Análisis de Varianza , Femenino , Mano , Humanos , Masculino , Competencia Profesional , Psicofísica , Tiempo de Reacción , Muñeca , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...